Theoretical Physics

Google Scholar 

For up-to-date publication list see arXiv


[43] Explicit construction of local conserved operators in disordered many-body systems, T. E. O'Brien, Dmitry A. Abanin, Guifre Vidal, Z. Papić, arXiv:1608.03296 

[42] Optimal free models for many-body interacting theoriesChristopher J. TurnerKonstantinos MeichanetzidisZlatko PapicJiannis K. PachosarXiv:1607.02679

[41] Universal Power-Law Entanglement Spectrum in Many-Body Localized PhasesMaksym SerbynAlexios A. MichailidisDmitry A. AbaninZ. PapićarXiv:1605.05737

[40] Electron-solid and electron-liquid phases in grapheneM. E. KnoesterZ. PapicC. Morais SmitharXiv:1601.07130Phys. Rev. B 93, 155141 (2016).

[39] Probing the geometry of the Laughlin stateSonika JohriZ. PapicP. SchmitteckertR. N. BhattF. D. M. Haldane,  arXiv:1512.08698New J. Phys. 18, 025011 (2016).

[38] Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin LiquidCiarán HickeyLukasz CincioZlatko PapićArun Paramekanti, arXiv:1509.08461, Phys. Rev. Lett. 116, 137202 (2016).

[37] Meron deconfinement in the quantum Hall bilayer at intermediate distancesM. V. MilovanovicE. DobardzicZ. Papic,  arXiv:1509.01921Phys. Rev. B 92, 195311 (2015).

[36] A criterion for many-body localization-delocalization phase transitionMaksym SerbynZ. PapićDmitry A. Abanin, arXiv:1507.01635Phys. Rev. X 5, 041047 (2015).

[35] Fibonacci anyons and charge density order in the 12/5 and 13/5 plateausRoger S. K. MongMichael P. ZaletelFrank PollmannZlatko Papić,  arXiv:1505.02843

[34] Geometric construction of Quantum Hall clustering HamiltoniansChing Hua LeeZlatko PapićRonny Thomale, arXiv:1502.04663Phys. Rev. X 5, 041003 (2015).

[33] Competing Abelian and non-Abelian topological orders in nu=1/3+1/3 quantum Hall bilayersScott GeraedtsMichael P. ZaletelZlatko PapićRoger S. K. Mong,  arXiv:1502.01340Phys. Rev. B 91, 205139 (2015).

[32] Many-body localization in disorder-free systems: the importance of finite-size constraintsZ. PapicE. M. StoudenmireDmitry A. Abanin,  arXiv:1501.00477Annals of Physics 362, 714 (2015).

[31] Many-body localization in periodically driven systemsPedro PonteZ. PapićFrançois HuveneersDmitry A. Abanin,arXiv:1410.8518Phys. Rev. Lett. 114, 140401 (2015).

[30] Quantum quenches in the many-body localized phaseMaksym SerbynZ. PapićDmitry A. Abanin,  arXiv:1408.4105, Phys. Rev. B 90, 174302 (2014).

[29] Solvable models for unitary and non-unitary topological phasesZ. PapicarXiv:1406.5729Phys. Rev. B 90, 075304 (2014).

[28] The single-mode approximation for fractional Chern insulators and the fractional quantum Hall effect on the torusC. RepellinT. NeupertZ. PapicN. Regnault, arXiv:1404.4658Phys. Rev. B 90, 045114 (2014).

[27] Periodically driven ergodic and many-body localized quantum systemsPedro PonteAnushya ChandranZ. PapićDmitry A. Abanin, arXiv:1403.6480Annals of Physics 353, 196 (2015).

[26] Tunable Fractional Quantum Hall Phases in Bilayer GraphenePatrick MaherLei WangYuanda GaoCarlos ForsytheTakashi TaniguchiKenji WatanabeDmitry AbaninZlatko PapićPaul Cadden-ZimanskyJames HonePhilip KimCory R. Dean, arXiv:1403.2112, Science 345, 61 (2014).

[25] Interferometric probes of many-body localizationM. SerbynM. KnapS. GopalakrishnanZ. PapićN. Y. YaoC. R. LaumannD. A. AbaninM. D. LukinE. A. Demler,  arXiv:1403.0693Phys. Rev. Lett. 113, 147204 (2014).

[24] Quasiholes of 1/3 and 7/3 quantum Hall states: size estimates via exact diagonalization and density-matrix renormalization groupSonika JohriZlatko PapićR. N. BhattP. Schmitteckert,  arXiv:1310.2263Phys. Rev. B 89, 115124 (2014).

[23] Topological Phases in the Zeroth Landau Level of Bilayer GrapheneZ. PapićD. A. Abanin,  arXiv:1307.2909Phys. Rev. Lett. 112, 046602 (2014).

[22] Local conservation laws and the structure of the many-body localized states, Maksym SerbynZ. PapićDmitry A. Abanin,  arXiv:1305.5554Phys. Rev. Lett. 111, 127201 (2013).

[21] Fractional quantum Hall effect in a tilted magnetic fieldZ. PapicarXiv:1305.2217Phys. Rev. B 87, 245315 (2013).

[20] Universal slow growth of entanglement in interacting strongly disordered systemsMaksym SerbynZ. PapićDmitry A. Abanin,  arXiv:1304.4605Phys. Rev. Lett. 110, 260601 (2013).

[19] Matrix Product States for Trial Quantum Hall StatesB. EstienneZ. PapicN. RegnaultB. A. Bernevig,  arXiv:1211.3353Phys. Rev. B 87, 161112(R) (2013).

[18] Quantum Phase Transitions and the ν=5/2 Fractional Hall State in Wide Quantum WellsZ. PapicF. D. M. HaldaneE. H. Rezayi, arXiv:1209.6606Phys. Rev. Lett. 109, 266806 (2012).

[17] Numerical studies of the fractional quantum Hall effect in systems with tunable interactions,  Z. PapicD. A. AbaninY. BarlasR. N. Bhatt, arXiv:1207.7282review for the CCP2011 conference, to appear in "Journal of Physics: Conference Series"

[16] Band mass anisotropy and the intrinsic metric of fractional quantum Hall systemsBo YangZ. PapićE. H. RezayiR. N. BhattF. D. M. Haldane, arXiv:1202.5586Phys. Rev. B 85, 165318 (2012).

[15] Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometriesZi-Xiang HuZ. PapicS. JohriR. N. BhattPeter Schmitteckert, arXiv:1202.4697Phys. Lett. A 376, 2157(2012).

[14] Stability of the k=3 Read-Rezayi state in chiral two-dimensional systems with tunable interactionsD. A. AbaninZ. PapićY. BarlasR. N. Bhatt, arXiv:1201.6598New J. Phys. 14, 025009 (2012).

[13] Model Wavefunctions for the Collective Modes and the Magneto-roton Theory of the Fractional Quantum Hall EffectBo YangZi-Xiang HuZ. PapicF. D. M. Haldane, arXiv:1201.4165Phys. Rev. Lett. 108, 256807 (2012).

[12] Tunable interactions and phase transitions in Dirac materials in a magnetic fieldZ. PapićD. A. AbaninY. BarlasR. N. Bhatt, arXiv:1108.1339Phys. Rev. B 84, 241306(R) (2011).

[11] Tunable Electron Interactions and Fractional Quantum Hall States in Graphene, Z. PapicR. ThomaleD. A. Abanin, arXiv:1102.3211Phys. Rev. Lett. 107, 176602 (2011).

[10] Topological Entanglement in Abelian and non-Abelian Excitation EigenstatesZ. PapicB. A. BernevigN. Regnault, arXiv:1008.5087Phys. Rev. Lett. 106, 056801 (2011).

[9] Fractional quantum Hall effects in bilayers in the presence of inter-layer tunneling and charge imbalanceMichael R. PetersonZ. PapicS. Das Sarma, arXiv:1008.0650Physical Review B 82, 235312 (2010).

[8] Atypical Fractional Quantum Hall Effect in Graphene at Filling Factor 1/3Z. PapicM. O. GoerbigN. Regnault, arXiv:1005.5121Phys. Rev. Lett. 105, 176802 (2010).

[7] Transition from two-component 332 Halperin state to one-component Jain state at filling factor ν=2/5M.V. MilovanovićZ. Papić, arXiv:1003.3315Phys. Rev. B 82, 035316 (2010).

[6] Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite Fermi liquid phasesZ. PapicM. O. GoerbigN. RegnaultM. V. Milovanovic, arXiv:0912.3103Phys. Rev. B 82, 075302 (2010).

[5] Interaction-tuned compressible-to-incompressible phase transitions in the quantum Hall systemsZ. PapićN. RegnaultS. Das Sarma, arXiv:0907.4603Phys. Rev. B 80, 201303 (2009).

[4] Fractional quantum Hall state at ν=1/4 in a wide quantum wellZ. PapicG. MollerM. V. MilovanovicN. RegnaultM. O. Goerbig, arXiv:0903.4415Phys. Rev. B 79, 245325 (2009).

[3] Theoretical expectations for a fractional quantum Hall effect in grapheneZ. PapićM. O. GoerbigN. Regnault, arXiv:0902.3233Solid State Comm. 149, 1056 (2009).

[2] Nonperturbative approach to the quantum Hall bilayerM. V. MilovanovićZ. Papić, arXiv:0710.0478 , Phys. Rev. B 79, 115319 (2009).

[1] Quantum disordering of the 111 state and the compressible-incompressible transition in quantum Hall bilayer systemsZlatko PapicMilica V. Milovanovic, arXiv:cond-mat/0702042Phys. Rev. B 75, 195304 (2007).